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INTRODUCTION
The strategic mine planning problem for open pit mines 
consists of determining the extraction sequence and 
utilization of blocks of earth from a mining deposit to 
maximize an objective. The mining deposit is represented 
as a 3D block model where attributes are assigned to each 
block such as grade, tonnes, emissions from removal and 
profit. Precedence relationships exist between blocks to 
capture wall slope constraints. The block model is projected 
over a number of periods to capture time related costs 
and constraints such as mining capacity per period. The 
objective of the problem is to maximize the sum of the 
discounted cash flow that comes from excavating and 
processing each of the blocks subject to the constraint set.

Strategic mine planning has the greatest impact on 
the overall profitability of a mining operation [10]. In 
addition, one of the most effective ways to reduce a mine’s 
environmental and sustainability costs is when optimizing 
its strategic mine plan.

To solve this complex problem, a mining engineering team 
will use their skills and experience along with powerful 
mine planning optimization tools to construct a solution to 
this problem.

Two key features of such tools that are highly desirable are:

•	 Solutions are produced that are optimal / provably near 
optimal

•	 Quick execution times

Producing good solutions quickly allows a mining engineer 
to explore many different scenarios and sequences of work,  
leading to better overall results and reduced risk.

The underlying scheduling problem to be solved is large 
and complex. Block models can consist of millions of blocks, 
each with tens or hundreds of precedence relationships to 
specify wall slope requirements. Other constraints such as 
mining capacity, minimum equipment utilization and grade 
constraints per period, are also present.

Traditional approaches to solving these problems have 
utilized solutions to the Ultimate Pit Limit problem (UPIT), 
solved using the Lerchs-Grossmann [13] or Pseudoflow 
algorithm [9]. UPIT problems only consider the precedence 
relationship between blocks, where the time value of 
money and other constraints are not directly considered. 
Other factors are later iteratively added using heuristics. 
Note that these heuristics do not guarantee an optimal 
solution is found nor provide an estimate of the quality of 
the solution.

Better solution methods that consider the problem 
holistically promise better quality solutions for the mining 
engineering team to use. Complex constraints such as ore 
blending specification can be explicitly included, which 
often are not handled well using approximation techniques.

Life of mine operations can be modelled using Mixed Integer 
Linear Programming (MILP). The core concept is to assign a 
[0,1] variable to each block per period and destination then 
formulate the problem using the time and space properties 
of the block set.

There are many advantages to using this modelling 
paradigm:

•	 The modelling is holistic.

•	 Problems can be solved to optimality / provably near 
optimality using rigorous mathematical methods.

•	 MILP is a global optimization technique. Global 
optimization techniques can increase profit by more than 
10% compared to heuristics, as we shall show in the 
included project study.

•	 Global optimization techniques often produce a solution to 
complex problems where simple approximation techniques 
fail.

Until recently, the size of problems that can be tackled has 
been limited by the power of commercial MILP solution 
packages. A recent advance allowing a step change in the 
size and/or solution time, is the Bienstock-Zuckerberg 
(BZ) algorithm. The BZ algorithm does not solve the MILP 
directly, but solves the easier linear programming (LP) 
problem. LP solutions make an excellent starting point for 
approximation techniques or for use in solving the overall 
MILP.

To date, the BZ algorithm has not been easy to understand 
without reading mathematical optimization papers 
and presentations. In this paper, we provide an easy to 
understand description of the algorithm, along with our 
work in this area.

The GEOVIA Research & Development team has created 
a new mine planning optimization engine, GEOVIA Mine 
Maximizer (GMX), that utilizes the BZ algorithm. GMX is 
the solution engine provided exclusively with the GEOVIA 
Strategic Mine Planner and the GEOVIA Pit Optimizer 
roles available on the 3DEXPERIENCE platform. Since its 
introduction in 2010, the BZ algorithm has been significantly 
improved using a number of speed-up techniques. We also 
provide easy to understand details of the speed-ups used in 
GMX, coming from our and other authors’ work.
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Picture 1: Snapshot of the Mine Optimization App included in the Strategic Mine Planner and the Pit Optimizer roles 

One of our main goals of this paper is to demonstrate 
the benefits of this approach compared to  formulating 
and solving the MILP using a commercial package. These 
benefits include:

•	 Problems can be solved in orders of magnitude quicker 
time.

•	 	Problems solved do not need approximating (such as 
solving problems period by period or using a sliding time 
window) but can be tackled holistically.

•	 Because the solver is more powerful, much larger problems 
can be tackled.

We provide results for the standard Minelib literature 
problem set [7] and a comparison with the Prober B engine 
used in the GEOVIA Simultaneous Optimizer role within 
Whittle, demonstrating the quality of our work. To conclude 
the paper, we highlight how this work fits within the 
GEOVIA mine planning tool set, along with a discussion of 
the future direction of our work.

In the following sections, a block is considered as a single 
scheduling unit with precedence relationships existing 
between blocks to capture geotechnical constraints. 
Also, mining benches and panels can be pre-designed by 
engineers, which enforce that one grouping of blocks needs 
to be extracted completely before the following grouping 
of blocks can be started. We model both cases as bins to 
be mined, where bins are part of a grouping referred to 
as a cluster. Block problems can be considered as cluster 
problems having one bin, so we do not differentiate 
between these cases in our description of the work, having 
created one solution to tackle all problems.

LIMITATIONS OF GENERAL 
MILP APPROACHES TO  
STRATEGIC MINE PLANNING
The main difficulty in solving a strategic mine planning 
problem is the problem’s size. The number of variables of 
the problem is proportional to the number of Bins x the 
number of Periods x the number of Destinations. Wall 
slope constraints that must hold per period also number 
in the millions. Except for smaller sized problems, such 
formulations are intractable for commercial MILP packages. 
Often formulations cannot be loaded due to memory 
restrictions, and solve times become prohibitive [15].

The problem can be reduced so that it can be solved using 
a commercial package. Blocks may be aggregated, or the 
problem may be solved on a period by period basis or by 
using a sliding time window. While taking these steps 
may mean that solutions can be generated, too much 
aggregation can lead to a 20-30% drop in Net Present Value 
(NPV) [19]. Only considering a small set of the periods in an 
iterative process is myopic where what is scheduled earlier 
does not take into account later factors. This can lead to 
additional reductions in NPV or no solution being found for 
complex problems.

Ideally, we would like to minimize the use of these reduction 
techniques, but how can these larger problems be solved? 
Note that commercial MILP packages have no knowledge 
of the underlying problem. Whether it is nurse roster 
scheduling, ship scheduling or strategic mine planning, 
all these problems are approached using a similar solution 
strategy. The effectiveness of the BZ algorithm comes from 
recognizing the specific strategic mine planning problem 
structure and using this in the algorithm’s development.
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THE BZ ALGORITHM
Originally proposed by Beinstock and Zuckerberg in 2009-2010, the BZ algorithm is a Lagrangian decomposition 
technique for solving an easier Linear Programming (LP) problem, an essential step for solving the MILP.

The algorithm efficiently takes advantage of the mining problem structure by breaking the formulation’s constraint 
set into two parts:

•	 The precedence constraint set

•	 A smaller set of hard constraints

Precedence constraints are those that require one thing to happen before another. They consist of wall slope 
constraints per period and constraints saying that if something has happened by a certain period, it has also happened 
by the next time period.

Hard constraints are the more general mining constraints. They include constraints such as the maximum amount of 
ore processed in a period, the maximum number of tonnes extracted and the minimum grade per period.

The algorithm is summarized in Diagram 1.

Simplify the  
partition set

Refine the  
partition set

New solution

Diagram 1: Algorithm Summary Schema

The following observations are relevant for understanding 
the algorithm:

Pricing sub-problem (Pseudoflow)
•	 A problem that only has precedence constraints can be 

efficiently solved as a network flow problem using the 
Pseudoflow algorithm [9].

•	 If the hard constraints are included in the objective using 
Lagrangian relaxation then this problem (the Pricing sub- 
problem) yields an upper bound on the solution objective.

LP Master problem
•	 Problems can be formulated using partitions of variables 

rather than the individual variables themselves. Variables 
are only ever allocated to one partition. The allocation 
must be such that the partitions yield a feasible solution 
to the problem. Artificial variables are used if an initial 
feasible allocation is not known

•	 The solution of a linear program (LP Master problem) in 
terms of partitions yields the Lagrangian multipliers for 
use in the next Pricing sub-problem.

•	 The Partitions of variables in the current iteration contain 
the partitions of the previous iteration meaning the LP 
Master Problem objective function value is nondecreasing.

•	 The LP Master problem yields a lower bound on the 
solution objective.

Pricing sub-problem 
(PseudoFlow)

Refining Process 
(Set operations)

LP Master Problem 
(LP Solver)
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Refining Process (Set operations)
•	 The solution from the Pricing sub-problem is used to create the next partition set, summarized in Diagram 2.

•	 The partition set is periodically simplified by merging partitions that had the same solution value in the previous 
iteration. This keeps the number of partitions small.

The algorithm proceeds until the LP Master problem and Pricing sub-problem solutions converge.

We summarized the Refining Process in Diagram 2.

The original partition set is compared to the new Pseudoflow solution from the Pricing Sub-problem to create partition sets 
that intersect (Intersection), do not intersect (Prior) and a set of variables in the Pseudoflow solution but not in the original 
partition set (New).

Diagram 2: Refining Process Schema

Iteration k

Iteration k+1

Original partitions Pseudoflow solution

Prior Intersection New

RUNTIME PROPERTIES
The BZ algorithm efficiently solves the LP formulation of a mine planning problem. To demonstrate this efficiency, we 
compare results for the literature problem KD, solving the LP using the BZ algorithm and a commercial solver. KD is a copper 
mine with 14,153 blocks, of which 12,154 appear in the Ultimate Pit to be scheduled over 12 time periods. Each block can 
go to two destinations, where it is processed as either ore or waste.

A commercial MILP package using the Simplex or Barrier algorithm to solve the LP, solves the LP problem in 4,710 seconds. 
Using our latest GMX implementation, we solve the LP in 2.6 seconds, an 1,811x speed up!

In the following, we detail methods we used to speed up the original algorithm, including those from the literature along 
with our own methods.
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BZ ALGORITHM SPEED-UPS
For many of the literature speed-up methods, we refer to 
the paper of Muñoz et al [16]. Our work includes these 
results along with new work to produce fast results. 
Overall, we have realized an 87x decrease in total runtime 
for the nine standard Minelib literature test problems 
compared to our original implementation of the algorithm 
from the 2010 paper [2].

Techniques used to speed up the BZ algorithm are 
summarized below:

Pre-processing
UPIT: We first solve an ultimate pit limit problem, then 
schedule the solution blocks. This step is proven to not lose 
the optimality of the solution [3] and often significantly 
reduces the size of the problem considered.

Waste reduction: It is possible to exclude possible 
destinations for waste blocks that will never be processed as 
ore.  A block is not processed as ore if no benefit is realized 
in terms of tonnage and profit achieved.

Early start: The earliest time a cluster can be removed 
can be determined by considering extraction constraint 
capacities. We use these early start times to strengthen 
the problem formulation by removing variables from the 
LP Master problem and unnecessary nodes from the 
Pseudoflow problem.

Pricing sub-problem (Pseudoflow)
Most of the work of the BZ algorithm is in solving the 
Pricing sub-problem which consists of solving a network 
flow problem using the Pseudoflow algorithm. For test 
problem KD, solving Pseudoflow problems accounts for 
56% of work done in our implementation.

Mineflow:  For our purposes, we have created a new 
fast Pseudoflow solution engine based on the recent 
work of Deutsch, Dağdelen and Johnson [6]. Mineflow 
shows speedups over the original Pseudoflow engine by 
customizing the algorithm specifically for Ultimate Pit Limit 
problems.

Warm starts: As outlined in Hochbaum [9], the Pseudoflow 
algorithm can be warm started using a previous solution 
that is stored as a normalized tree. In our work, we warm 
start the Pseudoflow algorithm when the solutions from 
one iteration to the next are expected to be similar. We say 
that solutions are similar provided the Optimality Gap is 
below a tolerance.

Path contraction: The Pseudoflow problem to be solved only 
consists of precedence constraints with hard constraints 
used to modify the objective from one iteration to the 
next. For a time period, each destination of a cluster’s bin 
is only dependent on other destinations of the bin, and in 
fact, they form a chain. Following the work of Muñoz et al 
[16], for a given set of Langrangian multipliers, these bin 
destinations per period can be pre-processed to determine 
the best destination for the bin if it is removed in the period. 
Then, using the precedence relationships, bin destination 
nodes can be contracted into a single cluster per period, 
significantly reducing the size of the Pseudoflow problem 
to be solved.

LP Master problem
At each iteration of the BZ algorithm, a small LP is created 
and solved. In our implementation, we use the “By” 
formulation of the problem, which we have found to be 
preferable to the “At” one.

LP Creation: We create our LP from the last period to the 
first and from the last destination of a bin to the first. This 
reduces work since we know that if a variable is not defined 
for one instance, then by the chaining property of the 
precedence constraints, it is not defined for the earlier one. 
Also, we track constraints that have been added to the LP 
to avoid duplication.

Warm starts: Due to the way partitions are refined, following 
the work of Muñoz et al [16], we set initial partition values 
to be their value in the previous iteration with new partition 
values set to zero.

Refining Process (set operations)
Initial partitions:  A good initial feasible solution can 
significantly reduce the number of BZ iterations by providing 
a good initial partition set. We initialize the partition set 
using a new heuristic, that is included in our scheme to 
reduce the number of BZ iterations.

Calculation: Each partition is stored as an unsorted list of 
identifiers. We also store a mapping of identifiers to the 
partition that it belongs to, which is kept current. Using the 
Pseudoflow solution along with these data structures allows 
for efficiently determining partitions from one iteration to 
the next.
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CONVERGENCE
We use a new propriety scheme to significantly reduce the number of BZ iterations. Chart 1 illustrates the effectiveness of 
this approach via example. For the largest Minelib [7] literature problem, McLaughlin, the number of iterations is 79 using 
our implementation of the original BZ algorithm, which is reduced to 16 for the new version. Of note is the rate of change 
of the Optimality Gap from one iteration to the next, highlighting the much faster convergence and so faster runtimes.

Chart 1: Comparison of convergence of the solution for the McLaughlin Problem

STOCKPILING
Stockpiles have inherent non-linear properties. The grade of ore placed on a stockpile is known, but once a quantity of ore is 
removed from the stockpile and then other ore is placed on it, the stockpile average grade becomes a non- linear function. 
While non-linear models can be created to represent stockpiles, these have proven intractable except for small size problems 
[14].

To model stockpiles using linear constraints, we follow the recent work of Moreno et al [14]. Here, an average grade of ore 
that is removed per period is specified, with constraints added so that the average grade of ore placed on the stockpile in 
earlier periods is at least this specified amount. Since it is less profitable to stockpile ore at a higher grade than that removed, 
in a solution, the two grades often match.

While this modelling approach is often used, we have found the solution procedure of Moreno et al [14] provides excellent 
results.
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Table 1: GMX results for Minelib problems 

Data Blocks Periods Destinations Precedence Upper Bound Feasible  
Solution Gap Literature  

Gap
BZ  

Iterations

BZ  
Runtime 

(s)

marvin 53,271 20 2 650,631 911,481,083 902,165,755 1.02% 0.79% 17 4.7

kd 14,153 12 2 219,778 410,891,357 409,983,459 0.22% 0.38% 12 2.6

mcLaughlin 2,140,342 20 2 73,143,770 1,512,972,410 1,511,711,920 0.08% 0.07% 16 175.2

mcLaugh-
lin_limit

112,687 15 2 3,035,483 1,324,830,265 1,323,162,078 0.13% 0.24% 15 66.7

newman 1,060 6 2 3,922 24,308,812 23,836,969 1.94% 1.27% 8 0.1

sm2 99,014 30 2 96,642 1,652,395,004 1,650,615,684 0.11% 0.09% 17 11.5

zuck_large 96,821 30 2 1,053,105 57,938,839 57,735,892 0.35% 1.04% 12 73.6

zuck_me-
dium

29,277 15 2 1,271,207 748,151,214 722,733,896 3.40% 3.00% 15 19.1

zuck_small 9,400 20 2 145,640 905,544,538 894,913,722 1.17% 0.07% 20 6.9

Comparing the Optimality Gap (Gap) to the best literature result (Literature Gap), we note that best/near best solutions are 
produced in each case. Also, the maximum runtime to produce a solution is under 5 and a half minutes. Lastly, our results 
compare favorable to those of specialized meta-heuristics, which can take many hours to run.

COMPUTATIONAL RESULTS
Table 1 reports results for the nine Minelib literature problems [7]. The Minelib problems are Direct Block Scheduling 
(DBS) problems of various sizes with up to two processing or extraction capacity constraints. All test runs were 
completed on a standard Lenovo ThinkPad P53 laptop with 9th Gen i7 CPU, 6 cores, running at 2.6 Ghz with  
32 GB memory. A lower bound comes from solving the LP Master problem, an upper bound from solving the Pricing sub-
problem. If the Optimality Gap (1.0-lower bound/upper bound) is at most 10-6 then we say the BZ algorithm has converged. 
The number of iterations and the time to do this work (in seconds) are reported in the last two columns.

Once the LP has been solved, we run ten variants of the TopoSort heuristic as well as the Optimize-Destinations heuristic 
[17] to create near optimal solutions. The total runtime for these heuristics is fast, taking less than a minute to complete 
on average.
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MULTIDIMENSIONAL  
SCENARIO DESIGN
GEOVIA has recently implemented several solutions to 
improve open pit strategic mine planning workflow. 
GMX is the solution engine provided with our Strategic 
Mine Planner and Pit Optimizer roles, available on the  
3DEXPERIENCE platform. Besides being a single source 
of truth, the  3DEXPERIENCE ecosystem provides a range 
of powerful tools, including design exploration, parameter 
analysis and multi-discipline engineering optimizations.

Multidimensional scenario design can be performed using 
the 3DExperience toolkit. Experiments that use different 
data sources and varied parameter values can be created 
in a single dashboard, allowing the exploration of many 
different financial and technical parameters.

The following questions can quickly be addressed:

•	 How is the design effected if the NPV discount rate is 
increased from 10 to 12%?

•	 What if trucking capacity is increased in year five?

•	 What if carbon emissions are reduced by 10% in later 
years?

Performing this analysis allows the mining engineer to 
explore many different cases that they otherwise would not 
have time to do. Multidimensional scenario design reduces 
project risk, increases efficiencies, and yields higher NPV 
profits. For project work, we have seen 20-30% increases 
in NPV profit in some cases.

PROJECT STUDY
To provide a fair evaluation of the GMX engine’s 
effectiveness, it is beneficial to compare it with a well-
established commercial tool. Many existing studies draw 
comparisons with GEOVIA Whittle, primarily focusing on 
the Milawa engine. Milawa is a widely used optimizer 
specifically designed to optimize the scheduling of panels 
(pushback/bench-level problems). However, Prober B is a 
better optimization engine offered within Whittle as part 
of the Simultaneous Optimizer (SIMO) role. This solver 
schedules at the panel level with block aggregation by 
grade bin and offers a broader optimization range than 
Milawa, tackling cut-off grades, stockpiles, and blending 
concurrently.

The 2016 paper “Advanced SIMO vs Milawa and SPCO”, 
authored by G. Whittle [18], supports the effectiveness of 
the Prober B engine in SIMO. The paper compares Prober B 
to other Whittle scheduling engines. In a study referenced 
in the paper, Prober B realized an increase of 41.4% in NPV 
compared to a 28.4% increase using Milawa and SPCO.

We compare the results of the GMX solution engine with 
Prober B (SIMO) for a project study of a gold and silver 
mine. The mine consists of two pits with 24,331 bins and is 
to be mined over 11 years. A three phase case and a seven 
phase case consisting of 49 and 119 panels respectively, 
are provided. For the seven phase case, stockpiling is also 
explored.

GMX can use the original number of bins for these cases 
whereas Prober B requires further bin aggregation to 
avoid longer runtimes. Prober B also requires configuring a 
number of parameters to get the best results.

For these three cases, GMX realizes a 3.1% to 15.7% 
increase in NPV compared to results that can be gained 
from Prober B by an experienced user.

GMX is also considerably more efficient than Prober B. In 
testing these cases and an additional 20 project studies, 
we have seen 22x faster runtimes on average. This runtime 
speed allows the consideration of many different scenarios 
by the engineering team as the strategic mine plan is 
created.
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CONCLUSION
In this paper, we have provided an easy to understand 
description of the BZ algorithm and ways that it has been 
sped up. This work is implemented in the new GMX solution 
engine, exclusively available in the GEOVIA Pit Optimizer 
and the GEOVIA Strategic Mine Planner roles on the 
3DEXPERIENCE platform.

We provided a comparison of runtimes for GMX and 
a commercial LP solution package, showing that GMX 
is 1811x faster for the literature problem KD. We also 
demonstrated fast runtimes for the nine literature Minelib 
problems [7], producing the best/near best solutions in 
each case. Lastly, we compared the solutions from GMX and 
Prober B (Whittle), realizing a 3.1 to 15.7% improvement 
for customer study cases, along with solution runtime 
benefits. In summary, these results demonstrate the power 
and benefit of the new GMX solution engine compared to 
the approach of formulating and solving a MILP using a 
commercial package, as well as the direct application of 
heuristics.

The BZ algorithm is an important milestone in solving mine 
planning problems. However the work does not finish here. 
Recall that the BZ algorithm does not solve mine planning 
problems, but rather provides an efficient method to solve 
the linear programming (LP) formulation of the problem. 
To further our work, we wish to use the BZ algorithm as 
an efficient subroutine to solve the more difficult MILP 
problem.

As shown by our experiments with the KD test problem, 
using standard Simplex or Barrier methods to solve mine 
planning programs becomes a significant bottleneck as the 
problem size increases. Therefore, rather than using the 
BZ algorithm in a pre-processing step to solve a smaller 
MILP problem, our future work involves investigating a 
customized MILP solution method allowing the use of 
the BZ algorithm at its core. Further, using parallelization 
will significantly reduce the time to produce optimal/near 
optimal solutions for large complex problems, something 
mining engineers want.
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