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Distribution of normal human left ventricular myofiber stress at
end diastole and end systole: a target for in silico design of heart
failure treatments. J Appl Physiol 117: 142–152, 2014. First pub-
lished May 29, 2014; doi:10.1152/japplphysiol.00255.2014.—Ven-
tricular wall stress is believed to be responsible for many physical
mechanisms taking place in the human heart, including ventricular
remodeling, which is frequently associated with heart failure. There-
fore, normalization of ventricular wall stress is the cornerstone of
many existing and new treatments for heart failure. In this paper, we
sought to construct reference maps of normal ventricular wall stress in
humans that could be used as a target for in silico optimization studies
of existing and potential new treatments for heart failure. To do so, we
constructed personalized computational models of the left ventricles
of five normal human subjects using magnetic resonance images and
the finite-element method. These models were calibrated using left
ventricular volume data extracted from magnetic resonance imaging
(MRI) and validated through comparison with strain measurements
from tagged MRI (950 � 170 strain comparisons/subject). The cali-
brated passive material parameter values were C0 � 0.115 � 0.008
kPa and B0 � 14.4 � 3.18; the active material parameter value was
Tmax � 143 � 11.1 kPa. These values could serve as a reference for
future construction of normal human left ventricular computational
models. The differences between the predicted and the measured
circumferential and longitudinal strains in each subject were 3.4 � 6.3
and 0.5 � 5.9%, respectively. The predicted end-diastolic and end-
systolic myofiber stress fields for the five subjects were 2.21 � 0.58
and 16.54 � 4.73 kPa, respectively. Thus these stresses could serve as
targets for in silico design of heart failure treatments.

patient-specific modeling; computational modeling; normal human
subjects; tagged MRI

HEART FAILURE IS A WORLDWIDE epidemic that contributes con-
siderably to the overall cost of health care in developed
nations. The number of people afflicted with this complex
disease is increasing at an alarming pace, a trend likely to
continue as the population ages and life span expands. Ven-
tricular wall stress is an important quantity that is related to
several physical processes of the heart (66), including ventric-
ular remodeling (15). During ventricular concentric remodel-
ing, an increase in ventricular wall stress during pressure
overload is hypothesized to lead to compensatory hypertrophy,
whereby an increase in systolic ventricular wall stress leads to

the overall thickening of ventricular wall as myocyte width
increases (16). This process translates into eventual heart
failure in the case of pathological cardiac hypertrophy (32).

Since ventricular wall stress affects ventricular remodeling,
which, in turn, determines the clinical course of heart failure
(6), normalization of ventricular wall stress is the cornerstone
of many existing and new treatments or devices for heart
diseases and heart failure. These treatments include surgical
ventricular restoration (SVR), which seeks to normalize left
ventricular (LV) geometry (10, 40), injection of polymer-based
material into ventricular wall, which seeks to augment ventric-
ular wall thickness (38, 50), and a ventricular partitioning
device, which can reduce end-diastolic (ED) ventricular myo-
fiber stress (36, 42).

However, information is lacking about regional ventricular
wall stress in normal humans that can be easily used as a target
for computational studies of ventricular stress normalization.
Such information can, in principle, be used to optimize the
injection pattern in polymer injection-based therapies, as our
laboratory described previously (64). Although the Young-
Laplace law can be used to estimate the average ventricular
wall stress in normal humans, it is still a largely simplified law,
and its prediction differs from that of a detailed computational
ventricular model that used the finite-element (FE) method
(70). Moreover, it is impossible to use the Young-Laplace law
to determine regional ventricular wall stress.

To bridge the gap in our knowledge of ventricular wall stress
in normal humans, we used the FE method to construct com-
putational models of the LV of five normal subjects and
validated these models individually through comparison with
myocardial strain measurements from tagged magnetic reso-
nance imaging (MRI) in each subject. The primary goals of this
work were to take the first step toward determining 1) a
reference ED and end-systolic (ES) LV myofiber stress field
that can be used as a target for ventricular wall stress normal-
ization; and 2) a reference set of diastolic and systolic material
parameters for normal humans that can be used in other
computational models of the normal human LV.

MATERIALS AND METHODS

Subject-specific geometries, volumes, and strains. Five normal
human volunteers (three men and two women; age 36 � 11 yr) were
used for the study and underwent MRI with Spatial Modulation of
Magnetization (SPAMM) (1, 68). This study was reviewed and
approved by the University of California San Francisco review board,
and subjects provided written, informed consent. Series of orthogonal
short-axis and long-axis images were acquired for each subject. The
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short-axis images were 1.1-mm pixel size, and each short-axis slice
was separated by 5 mm. The short-axis slices contained two orthog-
onal series of tags forming a grid. The radial long-axis slices were
oriented circumferentially at an interval of 30° around the LV and
contained one series of tags that was orthogonal to the ventricular long
axis. The tag spacing was 6 mm in both short-axis and long-axis
images.

In each subject, we used the medical images analysis software
MeVisLab (http://www.mevislab.de) to extract the relaxed LV geom-
etries in the magnetic resonance (MR) images by manually segment-
ing the LV endocardium and epicardium in the images that correspond
to the beginning of diastole. To avoid errors in measuring volume due
to ventricular motion, segmentation was performed in both short-axis
and long-axis slices, starting from just below the valves to the LV
apex. The segmented contours were used to reconstruct the LV
endocardial and epicardial surfaces. Then a fully hexahedral FE mesh
of the LV wall was constructed using the meshing software TrueGrid
(http://truegrid.com). The FE mesh in each of the five LV models
consisted of �5,000 nodes and 3,500 elements (Fig. 1). We verified
that this mesh density was sufficient to achieve numerical conver-
gence and extracted the LV endocardial surfaces from the MR images
corresponding to end systole (ES) and end diastole (ED) in each

subject. The ES and ED volumes (ESV and EDV, respectively) of
each subject were computed from these surfaces, and these volumes
were used to personalize the LV computational models, as described
in the section Model personalization.

Last, the systolic regional strains in the LV wall of each subject
were computed from the tagged MR images by semi-automatically
segmenting the tag lines in the tagged MR images using the tag
segmentation software FindTags (24) and then computing the defor-
mation gradient associated with the segmented tag lines using accom-
panying B-spline-based motion tracking technique software (TTT;
Laboratory of Cardiac Energetics, Bethesda, MD) (44, 45). Through-
plane motion was accounted for by including both the short-axis and
long-axis tag lines in the analysis.

FE modeling. We used the FE method to calculate the mechanical
response of the LV of each subject due to volume and pressure
changes during diastole and systole. To use the FE method, one must
prescribe a material law describing the myocardial stress-strain rela-
tionship and the appropriate boundary conditions.

Myofiber aggregate structure of the myocardial tissue was de-
scribed using a rule-based approach (41). Based on previous histo-
logical studies (52), we assumed that the myofiber orientation can be
defined by a linear variation of the fiber helix angle from �60° at

Fig. 1. First row: subject-specific left ventricular geometries at beginning of diastole, extracted from magnetic resonance images. Second row: match between
the finite-element (FE) meshes and the magnetic resonance images. Third row: two-dimensional sectors used to compute strain from the tagged magnetic
resonance images, superimposed onto the three-dimensional FE meshes shown as wire frames. Fourth row: rule-based fiber orientation map (color denotes helix
angle with respect to the circumferential direction when viewed from the epicardium, from �60°, blue, to �60°, red), superimposed onto the FE meshes shown
as wire frames.
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epicardium to �60° at endocardium throughout the LV wall. In
practice, we used the Visualization ToolKit (VTK) library (http://
www.vtk.org) to assign a local myofiber orientation to each element
of the FE LV models.

The material law used here has been described extensively (39, 53,
63). The key points are summarized here, and the details are given in
APPENDIX A. Briefly, two different material laws were used to account
for the passive material behavior that persists in the entire cardiac
cycle and the active material behavior that only occurs during systole.
The passive material behavior was described using a quasi-incom-
pressible transversely isotropic Fung law that was tailored to the
myocardium by Guccione et al. (18). This law is parameterized by
four parameters (C0, bf, bt, bfs) that describe the nonlinearity and the
degree of anisotropy of the tissue diastolic mechanical properties.
Specifically, C0 is a scaling factor, bf controls stiffness in the local
muscle fiber direction, bt controls stiffness in the plane perpendicular
to the local myofiber direction, and bfs controls rigidity under shearing
deformation. By fixing the ratios bf to bt and bfs, to values in Ref. 62,
the law can be reparameterized by two independent parameters: C0,
and a factor B0 that determines the level of nonlinearity of the
stress-strain relationship (APPENDIX A). These parameters were identi-
fied for each subject, as described in the next section. To account for
the incompressibility of the myocardial tissues (due its large water
content), the deformation is decomposed into its volumetric and
deviatoric components. The volumetric deformation (i.e., deformation
that leads to a change in volume) is constrained by imposing a high
bulk-to-shear modulus ratio (26).

The active material behavior was described by a stretch-dependent
active force law (19, 23). In this law, the active force is a function of
the current sarcomere length, peak intracellular calcium concentra-
tion, and the time from activation. Following Ref. 57, the generated
active force is orthotropic, with maximal contractile force developing
in the local myofiber direction and a contractile force 40% of the
maximum developing in the local sheet direction. The active force law
has a single parameter Tmax, which reflects the overall contractility of
the myocardial tissue, and was identified for each subject as described
in Model personalization, below.

In terms of model boundary conditions, the basal line was fixed to
account for the rather large stiffness of the annulus compared with the
myocardium itself. Mechanical loading of the LV was imposed by
prescribing a change in the LV chamber volume based on the volume
data acquired from MR images, as described in the previous section.
Specifically, the ED and ES phases were calculated by prescribing an
LV chamber volume equal to the measured EDV and ESV in each
subject, respectively.

The inertial and body forces were neglected in the computation, as
they can be shown (using basic dimensional analysis) to be small
compared with the elastic forces internal to the LV. The FE LV
models were implemented using the FE software Abaqus/Standard
(http://www.3ds.com/products-services/simulia/portfolio/abaqus) with
user-defined material subroutines written using the LMT�� library
(13, 35). Unlike previous studies, which used explicit FE methods
(39, 53, 63), we used a fully implicit solver in Abaqus/Standard.
Details of the implementation and its numerical validation can be
found in Ref. 12.

Model personalization. Unlike previous studies where only a single
scaling parameter C0 was calibrated using EDV and ED pressures, and
the exponential terms describing the nonlinearity of the stress-strain
relationship were fixed (39, 53, 62), here we calibrated two parame-
ters, namely, the scaling parameter C0 and the parameter (reparam-
eterized from the exponential terms) that defines the nonlinearity of
the stress-strain relationship B0. However, there is an infinite combi-
nation of these two parameters for each given set of EDV and ED
pressure. To find a unique and subject-specific value for these two
parameters, we also minimized the distance of the calculated passive
pressure-volume response to that found experimentally (34), in addi-
tion to matching the measured EDV and ED pressure. Klotz et al. (34)

showed that, when scaled appropriately, the LV ED pressure-volume
relationship can be defined by a single curve that is independent of
species and etiology.

The parameters C0 and B0 were determined by an optimization
process that contains two intertwined loops. The first loop was used to
optimize B0 so that the distance to the “Klotz” curve was minimized,
whereas the second loop (which was run at every iteration of the
previous loop) was used to optimize C0 for a given B0, so that the
calculated ED pressure matches the prescribed ED pressure at the ED
phase of the computation. A normal ED pressure of 9 mmHg was
used.

The single parameter Tmax that defines the tissue contractility was
determined sequentially for each subject once the passive material
parameters C0 and B0 were found. In each subject, Tmax was scaled
accordingly, so that the calculated ES pressure matches the prescribed
ES pressure at the ES phase of the computation. A normal ES pressure
of 120 mmHg was used. In a recent study, our laboratory carried out
a sensitivity analysis and showed that a pressure change within the
normal range did not modify the study’s conclusions (40).

These optimization problems were solved with Abaqus/Standard as
the forward solver, and the python optimization library NL-Opt (http://
ab-initio.mit.edu/wiki/index.php/NLopt) as the inverse solver. Typically,
fewer than 20 iterations of the derivative-free bound optimization by
quadratic approximation algorithm (47) were required to reach conver-
gence. More details on the implementation can be found in Ref. 12.

Model validation. To validate our modeling approach, we com-
pared the regional strains computed from our FE model to those
measured from tagged MRI. Only the core of the ventricles were
considered, and not the most apical and basal regions. Since the
measured MRI strains are systolic strains that were referenced to
the ED configuration, whereas the FE-computed strains were refer-
enced to the beginning of diastole configuration, we converted the
computed strains into systolic strains by using the basic transforma-
tion composition principles (53).

RESULTS

Subject-specific data and models. All results are presented
here as means � SD.

In general, the LV geometries from the reconstructed LV
models at the beginning of diastole were ellipsoidal with a
sphericity (defined by the short-to-long axis dimension ra-
tio) of 74 � 3.7% (Fig. 1). The LVs had ESV � 52 � 12.0
ml and EDV � 117 � 23.7 ml, and the average ejection
fraction of the five LVs was 56 � 3.95% (Fig. 2). Stroke
volumes and ejection fractions were in the normal range for
healthy humans (46).

Strain data (see Table 2) correlated well with published data.
Specifically, in Ref. 43, a study on 31 healthy volunteers,
circumferential strain values were �23 � 4, �22 � 3, �16 �
5, and �16 � 4% in the anterior, lateral, inferior, and septal
sectors of an equatorial slice, respectively, which correlates
well with the overall average of �17.6 � 5.8% we report here.
Similarly, in Ref. 43, the longitudinal strain values were �15 �
3, �14 � 4, �15 � 3, and �15 � 3% in the anterior, lateral,
inferior, and septal sectors of an equatorial slice, which corre-
lates well with the overall average of �13.9 � 2.9% found in
the present study.

The diastolic parameters that can reproduce 1) the measured
EDV at a normal ED pressure; and 2) an ED pressure-EDV
relationship that best matches the experimental results of Ref.
34 in each individual LV model were, on average, C0 � 0.115 �
0.008 kPa and B0 � 14.4 � 3.18 (Table 1). The resultant
normalized ED pressure-EDV curves from each of the five LV
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models were best fit (in a least squares sense) to the “Klotz”
curve (34) that defines the pressure-volume relationship of
multiple species and etiologies (Fig. 3). Additionally, the
systolic parameter that could reproduce the measured ESV at a

prescribed ES pressure of 120 mmHg in each individual LV
model was, on average, Tmax � 143 � 11.1 kPa (Table 1).

Model validation. The average circumferential strain differ-
ence between MR imaging and FE modeling was 3.4 � 6.3%
and agrees with previous studies (63) (Table 2). The average
longitudinal strain difference was 0.5 � 5.9% (Table 2). As an
illustration, Figure 4 compares, for a midventricle slice of the
third subject, MRI and FE circumferential and longitudinal
strains as a function of the circumferential position.

Myofiber stress distribution. The ED and ES myofiber stress
patterns across the five subjects are shown in Fig. 5. The ED
myofiber stress was larger near the subendocardial wall than in
the subepicardial wall. Also, the transmural variation of the ES
myofiber was nonmonotonic and was maximal at the LV
midwall.

The volumetric-averaged ED and ES myofiber stress distri-
butions across the five subjects are shown in Fig. 6. The mean
volumetric-averaged myofiber stress was 2.21 � 0.58 kPa at
ED, and 16.54 � 4.73 kPa at ES.

DISCUSSION

Our study details significant advancements in FE models of
human global and regional LV mechanics, especially in terms
of comparing these models to in vivo strain measurements. We
included five unique FE models customized with 1) in vivo
geometry measured with MRI; 2) diastolic material parameter
values formally optimized to best fit (in a least squares sense)
subject-specific ED pressures and EDV, as well as the ED
pressure-EDV relationship measured previously by Klotz et al.
(34); 3) myocardial contractility parameter values best fit to
subject-specific ES pressures and ESV; and 4) agreement to in
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subjects (VA1–VA5), extracted from magnetic resonance imaging (MRI).
V-ES � 52 � 12.0 ml. V-ED � 117 � 23.7 ml. Middle: corresponding stroke
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Table 1. Subject-specific values of the passive and active material parameters

VA1 VA2 VA3 VA4 VA5 Average SD

C0, kPa 0.117 0.121 0.105 0.107 0.123 0.115 0.00817
B0 12.4 15.0 18.3 16.0 10.1 14.4 3.18
Tmax, kPa 130 149 148 132 155 143 11.1

Parameters were calibrated so as to match end-diastole volumes and pressures and to minimize the distance of the pressure-volume relationship to the Klotz
curve (for passive parameters), and so as to match end-systole volumes and pressures (for active parameters). VA1–VA5, subjects 1–5; C0, scaling factor; B0,
factor that determines the level of nonlinearity of the stress-strain relationship; Tmax, factor that reflects the overall contractility of the myocardial tissue.
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vivo strains measured with tagged MRI throughout the LV. No
previous biomechanical models of the LV have been so rigor-
ously validated: 950 � 170 strain comparisons were made per
subject. These five FE models have allowed us to take the first
step in establishing a normal range of myofiber stress and its
distribution at ED and ES in humans. This data could serve as
a reference target for in silico optimization studies of cardiac
procedures and devices aimed at treating heart failure by
normalizing ventricular wall stress.

Comparison with modeling studies of heart failure treatments.
Recently, we performed two patient-specific FE modeling
studies of such heart failure treatments. The first was of SVR,
a procedure designed to treat heart failure by surgically ex-
cluding infarcted tissues from the dilated failing LV. To
elucidate and predict the effects of geometrical changes from
SVR in combination with coronary artery bypass grafting
(SVR � CABG) on LV function and wall stress, our laboratory

(40) created patient-specific FE LV models before and after
surgery using untagged MRI. Our results predicted that de-
creased diastolic distensibility in patients compromised the
postsurgical improvement in systolic function. By simulating
restoration of the LV back to its measured baseline sphericity,
we showed that diastolic and systolic function improved,
whereas peak myofiber stress was reduced substantially (by
50%: from 141.2 � 45.1 to 70.3 � 15.0 kPa) after SVR, and
the resultant LV myofiber stress distribution became more
uniform. This reduction in myofiber stress after SVR may help
reduce adverse remodeling of the LV. Overall, our patient-
specific FE model results were consistent with what the Sur-
gical Treatment for Ischemic Heart Failure trial speculated
would be the neutral outcome, that “the lack of benefit seen
with SVR is that benefits anticipated from surgical reduction of
LV volume (reduced wall stress and improvement in systolic
function) are counter-balanced by a reduction in diastolic
distensibility.” Thus, using our normal human myofiber stress
results to optimize the design of SVR for treating heart failure
may not be worthwhile.

Our second patient-specific FE modeling study of heart
failure treatment was of a polymer gel injected into the LV.
Data obtained from clinically relevant large-animal prepara-
tions and FE LV modeling indicate that adding noncontractile
material to a damaged LV wall can potentially reduce elevated
myofiber stress (59). Algisyl-LVR is a proprietary biopolymer
gel under clinical development that is injected into strategic
areas of the heart muscle, where it remains as a permanent
implant to prevent or reverse the progression of heart failure in
patients who have a dilated LV. To quantify the effects of
Algisyl-LVR � CABG, we (38) created patient-specific FE
LV models using untagged MRI before and after treatment.
The LV become more ellipsoidal after Algisyl-LVR � CABG
than after SVR � CABG, and both EDV and ESV decreased
substantially 3 mo after Algisyl-LVR � CABG in all patients
(EDV: from 264 � 91 to 146 � 86 ml; ESV: from 184 � 85
to 86 � 76 ml), whereas ejection fraction increased from 32 �
8 to 47 � 18%. These rather remarkable changes were accom-
panied by an �35% decrease in ED and ES myofiber stress.
Specifically, volumetric-averaged ED myofiber stress de-
creased from 6.6 � 1.9 to 4.4 � 1.8 kPa, and volumetric-
averaged ES myofiber stress decreased from 37.1 � 13.2 to
23.1 � 12.8 kPa. Posttreatment myofiber stress became more
uniform in the LV. Overall, our patient-specific FE model
results support the novel concept that Algisyl-LVR � CABG
treatment leads to decreased myofiber stress, restored LV
geometry, and improved function. Thus, using the normal
human myofiber stress results from the present study to opti-

Table 2. Mean and SD of the circumferential and longitudinal strain differences between magnetic resonance
imaging-measured and finite-element-computed strains, for each subject, as well as averaged across all five subjects

VA1 VA2 VA3 VA4 VA5 Average

ECC
FE , % �13.0 � 4.1 �16.6 � 4.1 �13.3 � 4.3 �14.2 � 3.5 �14.1 � 6.2 �14.2 � 4.4

ECC
MRI, % �17.9 � 4.1 �21.5 � 3.8 �16.6 � 5.6 �15.5 � 7.3 �16.5 � 7.9 �17.6 � 5.8

ECC
FE � ECC

MRI, % 4.9 � 4.4 5.0 � 4.8 3.3 � 5.7 1.3 � 6.6 2.4 � 9.8 3.4 � 6.3
Ell

FE, % �16.0 � 5.3 �10.6 � 8.9 �12.1 � 4.8 �15.0 � 3.8 �12.9 � 4.4 �13.3 � 5.5
Ell

MRI, % �13.5 � 2.6 �12.5 � 4.0 �14.4 � 2.1 �15.0 � 3.1 �14.0 � 2.6 �13.9 � 2.9
Ell

FE � Ell
MRI, % �2.5 � 7.3 1.9 � 10.2 2.3 � 4.4 0.0 � 3.4 1.1 � 4.4 0.5 � 5.9

E, strain; CC, circumferential; FE, finite element; MRI, magnetic resonance imaging; ll, longitudinal.
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mize the design of Algisyl-LVR for treating heart failure
probably would be worthwhile.

Implications for designing treatments for heart failure. To
develop a method for automatically optimizing medical de-
vices for treating heart failure, our laboratory previously used
experimentally measured ED and ES LV pressures and EDV
and ESV in dogs with coronary microembolization-induced
heart failure (64). Specifically, the FE simulation-based
method we developed automatically optimizes the injection
pattern of polymeric “inclusions” according to a specific ob-
jection function using commercially available software tools.
The optimization resulted in an intuitive optimal injection
pattern (i.e., the one with the greatest number of inclusions)
when the objective function was weighted to minimize mean
ED and ES myofiber stress and ignore LV stroke volume. In
contrast, the optimization resulted in a nonintuitive optimal
pattern (i.e., 3 inclusions longitudinally � 6 inclusions circum-

ferentially) when both myofiber stress and stroke volume were
incorporated into the objective function with different weights.

Now, we are in a position to design optimal Algisyl-LVR
injection patterns to treat individual heart failure patients.
Patient-specific FE LV models before treatment can be created
using untagged MRI, as described in Refs. 38 or 40. Patient-
specific ED and ES LV myofiber stress distributions can be
automatically computed for all possible Algisyl-LVR injection
patterns, as described in Ref. 64. Rather than simply minimiz-
ing myofiber stress and/or maximizing stroke volume, the
normal human LV myofiber stress results from the present
study can be used in the objective function. For example,
“Patient 1” in Ref. 38 had a baseline ejection fraction of 40%,
a 3-mo posttreatment ejection fraction of 65.4%, and a 6-mo
posttreatment ejection fraction of 75.9%, which is greater than
the normal range at rest (62.3 � 6.1%) assessed using radio-
nuclide angiocardiography (46). Apparently then, a less ag-
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gressive treatment (e.g., fewer injections) may have been more
appropriate. Perhaps an FE simulation-based design of an
optimal Algisyl-LVR injection pattern for that patient (aimed
at posttreatment ED and ES LV myofiber stress distributions
best fitting those obtained in the present study for normal
human subjects) would have arrived at an injection pattern that
resulted in a 6-mo posttreatment ejection fraction closer to
62.3%. Because at least 6 mo are apparently required after this
heart failure treatment to reach a steady state as far as reverse
LV remodeling is concerned, chronic patient-specific FE LV
modeling, as described in Ref. 33, may also be required in the
optimal treatment design.

It is especially interesting how the average ED and ES myo-
fiber stresses in the present study (2.21 � 0.58 and 16.54 � 4.73
kPa, respectively) appear to represent critical thresholds near
which post-Algisyl-LVR � CABG treatment ejection fractions
become normal (see Table 1 of Ref. 38). In Patient 1 in Ref. 38,
ejection fraction increased from 40 to 65.4% when average ED
and ES stresses decreased from 5.6 to 3.1 kPa and from 29.6 to
12.7 kPa, respectively. In Patient 2, however, ejection fraction
increased from 23.7% to only 29.2% when average ED and ES
stresses decreased from 8.7 to 6.4 kPa and from 52.4 to 37.4
kPa, respectively. Similarly, in Patient 3 (3 mo after treatment),
ejection fraction increased from 35.1% to only 47.0% when
average ED and ES stresses decreased from 5.4 to 3.6 kPa and
from 29.4 to 19.3 kPa, respectively. Six months after treatment,
however, ejection fraction in Patient 3 became 61.9% when
average ED and ES stresses became 2.8 and 12.8 kPa, respec-
tively.

A noninvasive method for estimating regional myocardial
contractility would be valuable for designing and evaluating
new surgical and medical strategies to treat and/or prevent
infarction-induced heart failure. Adverse LV remodeling after
myocardial infarction (MI) is responsible for nearly 70% of
heart failure cases. Previous studies in clinically relevant large-
animal preparations using state-of-the-art MRI tissue tagging
and FE modeling algorithms have demonstrated that a spatially
progressive loss of contractile function in perfused myocar-
dium outside the infarct zone is central to the mechanism by
which an initially well-tolerated acute myocardial loss progres-
sively leads to chronic symptomatic heart failure (14, 20, 28,
49). These animal studies have established that loss of con-
tractile function occurs initially and is most severe in the
perfused border zone adjacent to the infarct. Recently, our
laboratory (62) published the first use of a fully validated tissue
tagging and analytic modeling technique to assess regional
contractile function in the remodeled human heart of a 62-yr-
old man who suffered a MI in 1985 and had recently had
complete revascularization. Myofiber systolic contractile stress
that developed in the border zone (Tmax B) and in regions
remote from the MI (Tmax R) were quantified using cardiac
catheterization, MRI, and the FE method. The resulting FE
model of the patient’s beating LV could simulate the reduced
systolic strains measured using tagged MRI at matching LV
pressures and volumes. Tmax B (73.1 kPa) was greatly reduced
relative to Tmax R (109.5 kPa). These results were independent
of assumptions relating to border zone myofiber orientation.
These findings from our laboratory’s earlier study are consis-
tent with those of the present study. For example, our average
calibrated value of Tmax � 143 � 11.1 kPa is comparable to the

value Tmax R � 109.5 kPa and well above the value Tmax B �
73.1 kPa.

Historical context. The models developed in this study are
solved fully implicitly. This might seem a detail to noncom-
putational scientists, but it is the only way to fully trust the
obtained numerical results. Indeed, explicit methods will al-
ways return a result, but there is no guarantee that the numer-
ical result obtained using an explicit method is close to the
exact solution of the equations of the model (which is analyt-
ically intractable, see Ref. 37 for a more detailed discussion on
computational cardiac mechanics). In contrast, implicit meth-
ods, which involve a rather complex iterative process, will only
“converge” if the numerical result is close to the exact solution.
Commercial FE software can simulate “contact” problems
associated with medical devices for treating cardiac disease
(see, for example, Refs. 5, 36, 61, 65). The commercial implicit
FE software that we used (Abaqus/Standard) also can simulate
such contact problems, but has only very recently been used to
realistically simulate regional diastolic cardiac mechanics (60).

Despite intense interest by clinicians, engineers, and physi-
ologists in quantifying ventricular wall stress, no FE ventric-
ular model published before 1981 compared predictions of
myocardial deformation or strain against experimental mea-
surements under physiological conditions. The reasons for this
are twofold: 1) no FE software available before 1970 could
simulate finite or large deformation comparable to that which
occurs in the beating LV (e.g., 20% midwall myofiber strain
between ES and ED); and 2) such experimental deformation
measurements were not made until the mid-1980s. In 1974,
Janz et al. (29, 30) first showed the importance of using finite
deformation theory rather than classical or infinitesimal defor-
mation theory, at least for FE simulation of diastolic LV filling.
It then took until 1985 for a cardiologist and two bioengineers
to accurately quantify transmural distributions of three-dimen-
sional (3D) finite myocardial strain in the normal beating
canine LV using high-speed biplane cineradiography of closely
spaced columns of lead beads (56).

Two major advances in FE ventricular modeling and vali-
dation in the late 1980s and 1990s were the development of 1)
FE software that could simulate finite deformation of an
anisotropic material (e.g., Refs. 3, 4, 7, 8, 17), and 2) MRI
methods for noninvasively measuring regional 3D strain
throughout the LV myocardium of beating hearts (e.g., Refs. 1,
11, 69). Remarkably, the SPAMM method developed by Axel
and Dougherty (1) in 1989 is still the most widely used MRI
method for measuring regional LV 3D myocardial strain. One
explanation for its longevity and popularity is it has been
validated using a deformable phantom (67).

To the best of our knowledge, our laboratory was the first to use
FE LV modeling and systolic myocardial 3D strain measurements
to estimate regional myocardial contractility in vivo. Specifically,
we used cardiac catheterization, biplanar SPAMM, and the im-
plicit FE method of Costa et al. (7, 8) to measure regional
systolic myocardial material properties in the beating hearts of
four sheep with LV aneurysm (57) and six sheep with LV
aneurysm repaired surgically (58). With knowledge of these
myocardial material properties, we could quantify the effect of
aneurysm plication on regional myocardial stress distributions.
Although those two previous studies were significant advances
in FE modeling of hearts with MI, because of long computation
times, they both used a manually directed pseudo-optimization.
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In other words, a formal nonlinear optimization of material
constants was not feasible. Therefore, we began using com-
mercial explicit FE software (LS-DYNA) and optimization
software (LS-OPT) to develop and validate a computationally
efficient formal optimization of regional myocardial contrac-
tility (39, 51, 53, 54, 62, 63).

A recent study (2) that presented a proof-of-concept simu-
lator for a four-chamber human heart model created from
computer topography and MR images illustrated the governing
equations of excitation-contraction coupling and discretized
them using an explicit FE environment (Abaqus/explicit). To
illustrate the basic features of their model, the authors visual-
ized the electrical potential and mechanical deformation across
the human heart throughout its cardiac cycle. Thus their single
subject-specific model is better than our five subject-specific
models in terms of the number of heart chambers simulated and
the ability to predict regional cardiac electrical potential and
mechanical deformation throughout the cardiac cycle. To com-
pare their simulation against common metrics of cardiac func-
tion, however, they extracted only the pressure-volume rela-
tionship and showed that it agreed well with clinical observa-
tions. As our laboratory (53) and others (see, for example, Ref.
27) have pointed out, it is impossible to determine myocardial
material properties (in the form of 3D constitutive equations)
from ventricular pressure-volume relations alone.

Study limitations. From the perspectives of chamber blood-
flow and myocardial physiology, the normal human heart is an
amazing and incredibly complex organ or pump. We make no
claims about our subject-specific LV FE models being able to
realistically simulate all of those coupled phenomena. More-
over, our models can realistically simulate only a limited scope
of regional LV mechanics. Nevertheless, within that scope, our
models are state-of-the-art in their realism and the rigor with
which they have been validated.

The realism and validity of our subject-specific models is
limited to only one heart chamber, the LV, and two time points
in the cardiac cycle: the end of LV filling and the end of LV
ejection. Nevertheless, our laboratory has found ED and ES LV
pressure-volume relationships and mean myofiber stresses to
be extremely valuable in evaluating the efficacy of novel
medical and/or surgical procedures and devices for treating
ischemic cardiomyopathies (5, 9, 21, 22, 31, 33, 36, 38, 40, 48,
54, 58, 59, 61, 64, 65, 70).

Another limitation is that we used generic fiber orientation
maps, and not subject-specific ones. However, precise myofi-
ber orientation measurements are usually only possible ex
vivo, which is the main reason why very few normal human
datasets exist. Although recent studies have proven the feasi-
bility of in vivo diffusion tensor imaging (25, 55), the densi-
fication of such sparse data is still an open question, and
modified scanners with specific scanning sequences are re-
quired.

In terms of the mechanical model itself, one limitation is the
anisotropy, which is considered fixed at 40% cross-fiber stiff-
ness and active force. However, it is not possible to uniquely
identify an anisotropic constitutive material law solely based
on a pressure-volume relationship. Moreover, it was shown
that 40% cross-fiber stiffness and active force gave the best
agreement with ex vivo biaxial tissue stretching (57).

Another limitation is that we studied only three men and two
women. Although to facilitate the use of our work by the

community, we made the data freely available at https://simtk.
org/home/normalhumanlvs. We plan to study more normal
human subjects and make the new data freely available there as
well.

Conclusion. In conclusion, in this paper, we derived LV
myofiber stress distributions at ED and ES for five normal
human subjects, based on MRI and personalized computa-
tional cardiac mechanics modeling. Model personalization
involved deriving the range of normal passive and active
myocardial mechanical properties. The models were vali-
dated by comparing the systolic strains predicted by the
model to the ones measured in vivo by MRI. The validated
myofiber stress fields presented here can be used as a target
for future in silico studies of cardiac procedures. To do so,
the stress fields could be mapped onto a specific geometry
corresponding to a diseased heart and then used in the
optimization procedure.

APPENDIX A: CONSTITUTIVE MODEL FOR THE NORMAL
MYOCARDIUM

The material law used for the myocardium has already been
described extensively, for instance in Refs. 39, 53, 63. It is only
briefly recalled here. Basically, it is divided into passive and active
parts.

The passive part consists in a quasi-incompressible transversely
isotropic Fung law, originally proposed for the myocardium in Ref.
18. Transverse (i.e., sheet and sheet normal) stiffness is 40% of
myofiber stiffness. Quasi-incompressibility is imposed by decompos-
ing the transformation gradient into volumetric and isovolumic parts
and using a high bulk modulus (compared to the shear modulus) for
the volumetric deformation (26), such that the total free energy
potential is written as:
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where C0 is a first scaling factor, which must be identified for each
subject, and bf, bt, and bft are three parameters that, considering that
transverse stiffness is 40% of fiber stiffness and that shear stiffness is
average between normal and transverse stiffness, are defined by:
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bf � B0

bt � 0.40B0

bft �
bf � bt

2
� 0.70B0

where B0 is a second scaling factor, determining the level of nonlin-
earity of the stress-strain relationship, which must be identified for
each subject.

The active part consists in stretch-dependent active force law,
originally proposed for the myocardium in Refs. 19 and 23. Active
contraction is orthotropic, with full contractile force in the local
myofiber direction, 40% contractile force in the local sheet direction,
and no contraction in the local sheet normal direction. The contractile
force is written as:

T(t, Ef f) �
Tmax

2

Ca0
2

Ca0
2 � ECa50

2 (Ef f)
�1 � cos��(t, Ef f)��

with:

ECa50(Ef f) �
Ca0max

eB[l(Ef f)�t0] � 1
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�

t

t0
when 0 � t � t0

�
t � t0 � tr[l(Ef f)]

tr
when t0 � t � t0 � tr[l(Ef f)]

0 when t 	 t0 � tr[l(Ef f)]

tr(l) � ml � b

and

l(Ef f) � lr2Ef f � 1

where Eff is the Lagrangian strain tensor component aligned with the
local muscle fiber direction in the unloaded reference configuration;
Tmax is the law’s scaling factor, which must be identified for each
subject; Ca0 � 4.35 �M is the peak intracellular calcium concentra-
tion; Ca0max � 4.35 �M is the maximum peak intracellular calcium
concentration; B � 4.75 �m�1 governs the shape of peak isometric
tension-sarcomere length relation; l0 � 1.58 �m is the sarcomere
length at which no active tension develops; t0 � 100 ms is the time to
peak tension; m � 1.0489 s/�m and b � �1.429 s govern the shape
of linear relaxation duration-sarcomere length relaxation; and ECa50

is the length-dependent calcium sensitivity.
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